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a b s t r a c t

Smartphone-based human indoor localization was previously implemented using wireless sensor net-
works at the cost of sensing infrastructure deployment. Motivated by increasing research attention on
location-aware human–robot interaction, we propose a robot-assisted human indoor localization scheme
utilizing acoustic ranging between a self-localized mobile robot and smartphones. Data from the low-
cost Kinect vision sensor are fused with smartphone-based acoustic ranging, and an extended Kalman
filter based localization algorithm is developed for real-time dynamic position estimation and tracking.
Real robot–smartphone experiments are performed, and performances are evaluated in various indoor
environments under different environmental noises andwith different humanwalking speed. Comparing
to existing indoor smartphone localization methods, the proposed system does not rely on wireless
sensing infrastructure, and has comparable localization accuracy with increased flexibility and scalability
due to the mobility of the robot.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Human indoor localization and tracking have recently received
increasing research attention due to many real-world applications
such as location detection ofmedical personnel or firemen, pattern
of passenger flow in airports or shopping malls [1,2]. More re-
cently, as intelligent mobile service robots are introduced into the
human’s life, location-aware human–robot interaction becomes
popular [3,4]. Although the global positioning system (GPS) has
been dominating the realm of outdoor localization applications,
GPS signal transmission is prone to be blocked and distorted by
buildings, which severely deteriorates its indoor performance. Ac-
curate, robust localization technologies in indoor and other GPS-
denied environments are in great demand by the bloom of indoor
location-aware services and applications. In this paper, we propose
a novel indoor localization method utilizing robot–smartphone
cooperation. Low-cost sensors such as the Kinect sensor on robots
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are used together with acoustic communication techniques. A new
dynamic Kalman filter based indoor human localization and track-
ing algorithm is developed and validated in indoor experiments.

Smartphone localization has been extensively studied utilizing
prevalent WiFi-based techniques, which offer solutions for indoor
positioning and localization either leveraging existing wireless
access points or with amodification of infrastructure, see Section 2
for a more detailed literature review. The biggest issue of existing
WiFi-signature-map based localization without expensive infras-
tructure deployment is in the localization accuracy of position esti-
mates. It has been reported that significant errors in themagnitude
of 6–8 m always exist for WiFi localization [5,6]. Even with recent
improved statistical processing of radio signal strength [7] and
advanced algorithmsutilizing acoustic ranging [6], the limit ofWiFi
based localization by smartphones is reported to be around 1–
2 m [1]. The focus of this paper is to develop accurate smartphone
localizationwith the assistance of amobile robot, and the goal is to
achieve higher localization accuracy without the cost of intensive
deployment of sensing infrastructure.
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Meanwhile, localization is a classic topic studied in naviga-
tion of autonomous mobile robots. Kalman filter based localiza-
tion [8,9], grid-based Markov localization [10] and Monte Carlo lo-
calization [11,12] provide solutions for either local position track-
ing or global position estimation. A more challenging problem of
simultaneous localization and mapping (SLAM) arises when the
robot has no prior knowledge of the environmentmap [13]. Recent
attention has been drawn to the cases that only relative range to
the landmark can be detected. In [14], the range-only SLAM using
extended Kalman filter was investigated where prior knowledge
of landmark location is partially known. Experiments on SLAM
of mobile robots in indoor environments were presented in [15],
where awireless sensor networkwas deployed for either robot-to-
beacon or beacon-to-beacon range measurement. The estimation
error of the robot and landmark positions was reported less than
0.2 m and 0.5 m, respectively. The self-localized robot is able to
navigate autonomously in a known environment and serves as a
mobile beaconnodewhichprovides a global referencewith respect
to the environment. These reasons motivate us to deploy a robot
as the mobile position reference to assist smartphone for indoor
localization.

In this paper, we propose a cooperative human localization sys-
tem that uses a mobile robot and smartphones to localize moving
persons. The system consists of a self-localized robot that tracks
human targets using its onboard Kinect sensor, and a smartphone
based acoustic ranging subsystem. An extendedKalman filter (EKF)
based dynamic positioning algorithm is developed and integrated
with the acoustic relative ranging subsystem to provide real time
localization of the moving human target. Experimental results
show successful localization in different indoor environments, and
performances are evaluated under various levels of environmental
noises and with different human walking speed. By taking ad-
vantage of both low-cost 3D vision sensor and smartphone-based
acoustic relative ranging techniques, we provide an efficient so-
lution for indoor human localization and motion tracking without
installing complex infrastructure.

The contribution of the paper is threefold. First, a new system
configuration of robot–smartphone cooperation is proposed for
robot-assisted indoor localization. Second, an extended Kalman
filter based dynamic positioning algorithm is developed to solve
the problem of localization and tracking of moving persons in real
time. Third, the localization accuracy achieved is comparable to the
current limit ofWiFi-based techniques for smartphone localization
without relying on wireless sensing infrastructure. This paper is a
significant extension of our early conference paper [16]. Specifi-
cally, we have added comprehensive literature review in Section 2,
added algorithm details in Section 4, and added extensive experi-
mental results in different indoor environments in Section 5 of the
paper.

The rest of the paper is organized as follows: Section 2 reviews
relative works on human indoor localization approaches and sys-
tems. Section 3 introduces the overview of the proposed robot-
assisted localization system. Section 4 describes the details of the
systemdesign and the ExtendedKalman Filter based dynamic posi-
tioning algorithm. In Section 5, we present system implementation
and experimental results in different indoor environments. The
performance under the effect of environmental noise and walking
speed is also discussed in Section 5. We conclude our work in
Section 6.

2. Related work

2.1. Radio fingerprint based localization system

The astonishing development of wireless network such as ac-
tive radio frequency identification (RFID), WLAN and ultra-wide-

band has remarkably facilitated human indoor localization tech-
niques using either specialized or minimally modified infrastruc-
ture [5]. A RFID based location sensing system was developed
in [17]. By scanning the data emitted from active RFID tags, a scene
analysis methods was adopted to compare the signal strength
perceived from the target tag and reference tags (deployed as
landmarks). The position of the target was estimated by the k-
nearest neighbor algorithm with around 1 m average accuracy.
In [18], an online probabilistic RFIDmap and adaptive Kalman filter
were applied to obtain localization with accuracy from 0.5 m to 5
m, depending on the received signal strength (RSS) noise level and
the number of RSS samples collected. The authors in [19] presented
the so-called RADAR localization system utilizing WLAN network.
The target position was estimated by searching the signal strength
map built in offline modeling phase for the closest match of signal
patterns. The position accuracy was around 2 m to 3 m. The Horus
system proposed in [20] used the probabilistic method to estimate
target positions. The radio map was represented in the form of
signal strength probability histogram for each access point. The lo-
calization accuracy of Horus at the 90th percentile of the error CDFs
is about 1m . The COMPASS system [21] considered the orientation
of targets in the online positioning phase, where the problem of
blocking effects of human body encountered in [19] wasmitigated.
The average positioning error was approximately 1.65 m. The use
of smartphones as radio signal strength indications (RSSI) inWLAN
systemwas studied in [7], inwhich the average error about 2mwas
reported. Overall, existing wireless indoor localization methods
based on WiFi signature maps needs effort on building radio map,
and high localization accuracy is usually obtained at the cost of
intensive deployment of sensing infrastructure.

To overcome the aforementioned limitation of infrastructure
dependence, recent effort has been put into developing new
techniques for smartphone localization utilizing embedded sen-
sors and the increasing computational capability onboard of
smartphones. In [22], logical localization was achieved through
an ambience fingerprint map constructed by combining optical,
acoustic and motion measurement from sensors on smartphones.
In [23,24], the fingerprint map was built by combining users’
motion in their daily activities, whichwasmeasured by accelerom-
eters on the smartphones. In [25], the inertial sensor data from
smartphones and the WiFi RSSI information were fused through
a proposed Monte Carlo Markov chain algorithm for location esti-
mationwithout constructing radiomap beforehand. However, cur-
rent smartphone-based indoor localization techniques using the
off-the-shelf wireless infrastructure suffer low accuracy. Aiming
at highly accurate localization, the recent work presented in [1]
utilized smartphone-based acoustic ranging to estimate distances
from vicinal peer-phones for the purpose of constructing a rigid
graph constraint, thus to reduce the localization error to reach the
accuracy level of 1 m to 2 m.

2.2. Inertial positioning system

Inertial positioning systems typically rely on themeasurements
from inertial measurement unit (IMU) such as accelerometers,
gyroscope and magnetometers, and have been widely developed
to track motion displacement of a moving agent with respect
to a known initial position [26]. The maturity of Micro Electro-
Mechanical Systems (MEM-S) technology enables inertial sensors
to be fabricated in sufficiently tiny scale, which can be integrated
into many portable devices as smartphones and tablets. The ubiq-
uity, portability of these sensing devices make it possible to per-
form practical dynamic position tracking for human. The inertial
positioning system was experimentally evaluated with different
placement of IMU sensors on a user’s body and promising results
were shown for human localization [27].
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Although a stand-alone inertial positioning system is able to
estimate the position of a moving person independent of infras-
tructure deployment, the estimation error accumulates and grows
rapidly over time, which makes the system reliable only in a short
period of operation before the error accrues to an unacceptable
level. Althoughmethods such as zero velocity update [28] has been
proposed to reduce the measurement drift, the problem of error
accumulation is invertible thus affect the accuracy of estimation
for inertial positioning systems. The hybrid inertial positioning
systems that incorporate external measurement or map matching
provide a feasible solution to long-term position tracking with
inertial sensors. The environment information observed is occa-
sionally used to correct the accrued error and maintain a bounded
estimation uncertainty. The work presented in [29] developed an
indoor localization system for pedestrians, where measurements
from foot-mounted IMU and a detailed environmentmodel are fed
into a particle filter to perform dynamic positioning. The estima-
tion error are boundedwithin 1m. In [30], the radio signal strength
measurements of WiFi or cellular signal are incorporated to pro-
vided additional constraint on the position estimation tracked by
IMU sensors. Inspired by the SLAM technology in robotics, the radio
signal strength map is built online instead of using a pre-surveyed
radio map. In [31], the cumulative estimation error of pedestrian
position developed by the inertial positioning system is corrected
occasionally by relative ranging to sparsely deployed beacons in
the environment, and a particle filter fuses both IMU measure-
ments and ranging measurement to obtain position tracking with
bounded uncertainties.

2.3. Cooperative localization system

The radio map based localization and the hybrid inertial posi-
tioning systems reviewed above rely more or less on existing or
added wireless network infrastructure in the indoor environment,
which may be difficult to implement in an unknown environment
without pre-deployed wireless infrastructure. This could happen
in applications such as rescue personnel, first responders, security
personnel andmilitary operation unit searching a building for peo-
ple trapped [32], where infrastructure-independent positioning
system is in demand.

Cooperative localization, in which two or more moving agents
recursively estimate their positions relying on relative range mea-
surements to peer agents or anchor nodes that provide reference
positions, has attracted considerable attention recently as it relaxes
the requirement of extensive infrastructure installation. Potential
advantages of cooperative localization include the capability of
simultaneous localization for multiple agents, increased flexibility
and scalability in spatial coverage. The authors in [33] proposed a
cooperative localization scheme for multiple human agents who
are equipped with dual foot-mounted inertial sensors that track
the motion of each person and radio devices that perform inter-
agent ranging. A joint state of the position of multiple persons are
estimated by a sensor fusion center that can be carried out on one
of the persons. In [34], a Bayesian multi-hypothesis initialization
strategy was proposed to cope with the initialization problem of
Gaussian-based filter for cooperative localization. Recently, the
authors in [35] addressed the problem of real-time cooperative
tracking of multiple target nodes in ad hoc wireless network
environments where only a small number of beacon nodes are
deployed. Taking advantage of ranging between target nodes, the
proposed cooperative tracking algorithm is able to concurrently
estimate the position of multiple targets under low inter-node
connectivity.

Fig. 1. Overview of robot-assisted indoor human cooperative localization scheme.

2.4. Motivation of proposed work

Motivated by the fact that social robots have been introduced
into human’s environments and operated alongside humans [36],
we propose in this paper a novel robot-assisted human indoor
localization scheme utilizing acoustic ranging between a self-
localized robot and smartphones. In contrast to the systems that
utilize stationary anchor nodes in wireless sensor networks, the
flexibility and scalability in coverage of operation area of our
proposed system is enhanced by the mobility of the robot. Also,
the robot has adequate computational power to execute advanced
fusing algorithms (such as the Kalman filter based method pro-
posed in the paper) in real time, thus no central data processing
units are required. Furthermore, the ranging subsystem employed
in the proposed system does not need anywireless sensor network
to be present in the environment, which is especially appealing
to environments in search and rescue missions such as firefighter
localization.

The advantages of our proposed robot-assisted localization
system are twofold. First, we provide an alternative localization
method that does not rely on the existence of WiFi infrastruc-
ture. In environments where the WiFi infrastructure is not avail-
able or it is not desirable to rely on it, such as disaster recovery
sites or battlefields, our robot-assisted system provides reliable
localization results. Second, just as smartphones have been woven
into people’s social life during the past decade, mobile robots are
getting cheaper and smaller, and have increasingly been used in
human environments. For example, robots are used in intelligent
emergency systems for elderly independent living [37], and are
also used to assist indoor localization of smartphones [38]. We are
witnessing the beginning of an era where robots are used along
with other mobile computing devices, such as smartphones and
other wearable devices, to provide various services for people in
their daily life. Our study provides the methodology for robot–
smartphone collaboration, and contributes to the next generation
of mobile computing techniques that integrate robots and other
mobile devices.

3. System configuration

In this paper, we propose a cooperative indoor localization
system using smartphones and a mobile robot with low-cost sen-
sors. As shown in Fig. 1, the localization system consists of an
autonomousmobile robot equippedwith a Kinect 3D vision sensor
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and acoustic ranging devices (a microphone and a speaker), and
smartphones (with microphones and speakers) with persons to be
localized. The self-localized robot is able to simultaneously local-
ize and track human targets by: (1) following the person named
‘‘Human Target 1’’ in the figure, and keeping certain distances from
him/her using the Kinect vision sensor, (2) using the location of
the robot and Human Target 1 to localize Human Target 2 utilizing
acoustic ranging measurements, and (3) using the estimated loca-
tion of the robot and any one of the human targets to localize any
additional human targets.

The proposed localization system utilizes the mobile robot as
a moving beacon, and uses range-only measurements to esti-
mate the positions of the human targets. Comparing to traditional
lateration-based positioning systems, which requires at least three
beacon nodes to uniquely determine the target position in a two-
dimensional space [8], the proposed system uniquely determines
the targets’ positions taking advantage of themobility of the robot.
The coverage of localization is also enlarged by the mobility of
the robot and does not depend on fixed infrastructures as used in
existing indoor localization methods.

The sensors used in the proposed system include a Kinect sen-
sor, microphones and speakers on both the robot and the smart-
phones, and robot self-localization sensors (such as odometry,
gyroscope, a laser-range finder or a camera that are commonly
equipped with a mobile robot [39]). The expected operational
distances between the robot and the human targets are within 6m
, which is the maximum detection range of the Kinect sensor. In
the next section, we present the functional block diagram of the
system, together with a Kalman filter based sensor fusing method
to efficiently localize and track humans using the proposed system.

4. Robot-assisted human indoor localization

The proposed human indoor localization system is composed
of (1) robot self-localization, (2) human-follower using Kinect vi-
sion sensor, (3) acoustic relative ranging, and (4) dynamic target
position estimation. A functional block diagram of the proposed
localization system is shown in Fig. 2. While techniques on robot
self-localization, human-follower using the Kinect vision sensor
are available, the main challenge of the proposed system lies in
the development of an acoustic relative ranging subsystem, and
a dynamic position estimation algorithm to localize the target
person. Next, we describe each of the components in this section.

4.1. Robot self-localization

Although localization and mapping in an unknown or partially
known environment can be done using existing SLAM techniques,
we focus our main attention to human localization, and assume
known indoor environments with a prior-obtained map, which is
a reasonable assumption for many indoor environments (such as
shopping malls, museums, airports, or student dorms). We also
assume the robot is equipped with onboard sensors and is able
to localize itself in the known indoor environment. Robot local-
ization technique such as Monte Carlo localization algorithm [40]
can be used, which fuses sensory data from proprioceptive and
exteroceptive sensors to estimate the pose of the robot recursively.
The robot self-localization module takes input from sensors (such
as odometry, gyroscope and laser range finder), and outputs the
estimation of robot’s current position.

Note that the sample sets of robot position estimates main-
tained by the Monte Carlo localization algorithm are discrete ap-
proximation of continuous belief. When the robot is localized in
a known environment, the mean of the robot position estimates
provides the robot’s current position information.We initialize the
particle filter with Gaussian distribution and compute a Gaussian

Fig. 2. Functional block diagram of the localization system,where the shaded boxes
present new algorithms developed in the paper.

approximation from the discrete samples of robot position esti-
mates using the Density Extraction approach [41]. Therefore, the
mean, ξ̂r (t), and the covariance, P r (t), of the calculated distribution
of estimates are used as the output of the robot self-localization
subsystem.

4.2. Kinect-based human following

As mentioned earlier, we use the low-cost Kinect vision sensor
to track human Target 1. The Kinect sensor detects the centroid
of the moving human target and returns the relative range to it.
The deviation from the reference ranging and bearing to the human
target serves as the control input, which drives the robot to keep
the centroid in the middle of the robot vision field and maintain
a given distance to the human target. The autonomous human-
following program [42] can be used for this functional module,
which returns the distance from robot to Target 1, dr1(t), and the
position of Target 1, ξt1(t).

4.3. Acoustic relative ranging

The acoustic ranging subsystem consists of the robot and smart-
phones, which have microphones and speakers as onboard acous-
tic devices. Each of the robot and the target smartphones plays
a pre-designed beep file in a pre-determined order, and simul-
taneously records the received beep files and send the files to
the robot for data processing and relative distance measurement.
In principle, ranging is done by time-of-arrival (TOA) method to
estimate the sound travel time from one device to another [6].
However, challenges exist in preventing interference in acoustic
signal, the lack of clock synchronization, and overcoming uncer-
tainties in emitting and detection. These challenges have been
tackled by designing the beep signal to reduce interference, two-
way detection to avoid the need for clock synchronization, and a
robust signal detection method, details of which are discussed in
this section. The acoustic ranging subsystem returns the relative
distances between the robot and the two targets, dr1(t), dr2(t), and
the distance between Targets 1 and 2, d12(t). Since dr1 is already
available from the Kinect-based human following subsystem, only
dr2 and d12 are returned from the acoustic ranging module.
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4.3.1. Signal design for acoustic ranging
The acoustic signal referred to as the beep, consists of several

evenly spaced monotonic signal bursts. The frequency, number of
bursts and spacing between them in the ranging signal directly
impact the accuracy, measurement latency, noise susceptibility
and intrusiveness to humans, so these parameters are carefully
selected for the design of the beep in our system. As most of
background noise (e.g. human conversation 300–3400 Hz, mu-
sic 50 Hz–15 kHz) is concentrated in lower frequency band, we
used high frequency signal in the 16–20 kHz range, which is less
susceptible to noise and easier to filter. The ranging accuracy is
directly proportional to the number of signal bursts but it also adds
measurement latency.We used 4 signal bursts for our experiments
with beep interval of 5000 samples.Weuse 16 kHz signal in our ex-
periments since human ears are less sensitive to higher frequency
signals, which makes our beep signal less intrusive. Considering
the sampling frequency of 44.1 kHz (used in our experiments) and
nominal sound velocity of 340 m/s, the minimum resolution for
acoustic relative ranging is 0.77 cm.

4.3.2. Acoustic signal detection methods
Traditionally, correlation based method discussed in [43] has

been used to detect time or arrival. However, correlation method
results in larger measurement errors. In this work, we adopt the
change point detection method to detect first instance of arrival of
the beep signal, which was proposed in the coauthor’s (Chen) pre-
vious work [6,44]. The method requires the beep signal to be uni-
formly distributed in a narrow frequency band, and ensures better
measurement accuracy over traditional correlation based method.
Specifically, we first calculate the Short Time Fourier Transform
(STFT) of the acquired signal to filter out the low frequency back-
ground noise and extract the signal at the beep frequency band.
The first instance of strong deviation from the normal background
noise indicates the instance of arrival of the beep signal. Under
different low and high noise environments, change point detection
method can achieve within 15 cm measurement accuracy in 300
cm testing distances (see Fig. 7 of [6]).

4.3.3. Multi-agent scheduling and measurement
Our acoustic ranging subsystem extends existing two-agent

scheme [43] to multiple agents, i.e., three agents including the
robot, Targets 1 and2. Unlike the fixed-windowmethodused in the
recent work [6], where a fixed time window is scheduled to each
agent in emitting the beep signal, we propose a new scheduling
scheme that relies on an active request and acknowledgments. In
our method, the robot sends the command to Targets 1 and 2 to
start recording and waits for their acknowledgment. In the next
step, it sends the command to Targets 1 and 2 to play the beep
signal sequentially and waits for their acknowledgment once the
target phone completes playing the beep signal. This active beep-
signal scheduling and data acquisition cycle results in faster data
processing than existing fixed time-window scheduling [6], thus
results in shorter ranging measurement and decreased ranging
latency, which is important in our real time human localization
system.

The requests sent out by the robot and acknowledgments sent
back by the targets, and the recorded sound files are sent using
Transmission Control Protocol/Internet Protocol (TCP/IP) commu-
nication. The design of the TCP/IP protocol ensures lossless end-
to-end data transmission even in the event of packet loss, by an
acknowledgmentmechanismbetween the sender and the receiver.
Note that the accuracy of acoustic ranging is not affected by net-
work delay or jitter as we use two way detection method in this
implementation [43].WiFi network is used in our implementation,
as commonly seen in recent work (e.g. [1,43,45–47]) for acoustic
ranging and localization. In the case there is no existing wireless

Algorithm 1 Acoustic Ranging Algorithm
1: τ = 0
2: repeat
3: Robot starts recording
4: Robot sends start_recording command to Target 1 and 2
5: Robot receives recording started ack. from Target 1 and 2
6: Robot plays beep
7: for i = 1 to 2 do
8: Robot sends play beep command to Target i
9: Robot receives beep played ack. from Target i

10: end for
11: Robot sends stop_recording command to Target 1 and 2
12: Robot receives recording stopped ack. from Target 1 and 2
13: Robot stops recording
14: Robot retrieves recorded sound files from Target 1 and 2
15: if τ ̸= 0 then
16: waitwhile: (τ−1)th thread of range_calculation completes

17: update dr2 and d12
18: end if
19: start τ th thread of range_calculation
20: τ = τ + 1
21: output: dr2 and d12
22: until time out

23: Function range_calculation
24: STFT of files recorded by Robot, Target 1 and 2
25: calculate S12 and Sr2, samples between beeps
26: ∆T12 = S12/f and ∆Tr2 = Sr2/f
27: return d12 = ∆T12·c and dr2 = ∆Tr2·c
28: End Function

network available to the system, an ad hoc communication net-
work can be set up between the robot and the targets to run our
acoustic ranging algorithm.

In addition to the active scheduling scheme, our acoustic rang-
ing module implements a multi-threading approach to further
reduce the latency in the data acquisition cycle. We also use per-
sistent socket connections to reduce the time latency for data com-
munication. Taking advantage of the light CPUworkload during the
data acquisition cycle, the data collection cycle for the τ th cycle
is done simultaneously to signal processing and range calculation
cycle for the (τ − 1)th cycle, which results in reduced latency in
comparison to the earlier work [6].

The overall acoustic ranging implementation on the robot is
described in Algorithm 1. The algorithm describes our acoustic
ranging scheme that runs on the robot. The robot coordinates play-
ing of the sound beeps and recording the sounds files at the targets.
The recorded sound files are retrieved by the robot and time of
arrival is calculated using the method described in Section 4.3.2.
The STFT of the retrieved files is first calculated. Then the numbers
of samples between beeps of Target 1 and Target 2 represented by
S12 in line 25, and of the robot and Target 2 represented by Sr2 in
line 25, are calculated. The values of S12 and Sr2 are then used to
calculate ∆T12 and ∆Tr2, giving the time of flight between Target 1
and Target 2, and the robot and Target 2. This time of flight is then
used to calculate d12 and dr2 in line 27. Note that the parameters
f = 44.1 kHz denotes the sampling frequency and c = 340 m/s
denotes the nominal sound velocity. Since the beep playing by each
agent is carried out in independent time slots, the extension of
this scheme for more than 2 targets can be achieved without those
agents interfering with each other.
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Fig. 3. The block diagram of the localization system,where the shaded box presents
the dynamic target position estimation module, and the solid lines represent data
flow.

4.4. Dynamic target position estimation

A key component of the localization system is the dynamic
positioning algorithm running on the robot to determine the target
phone position.We propose an extended Kalman filter (EKF) based
position estimation algorithm, which fuses the measurement out-
put from the acoustic ranging, the human following, and returns
the position estimate of the human Target 2. We formulate the
dynamic positioning problem as follows:

Given that the robot self-localization module outputs the robot
position, ξ̂r (k), the Kinect-based human following module outputs
the position of Target 1, ξt1(k), and the acoustic ranging module
outputs the relative distance between the robot and Target 2,
dr2(k), Target 1 and Target 2, d12(k), where

dr2(k) = ∥ξr (k) − ξt2(k)∥2, (1a)
d12(k) = ∥ξt1(k) − ξt2(k)∥2. (1b)

our problem is to design a dynamic target positioning algorithm
to estimate the position of Target 2, ξt2(k).

The data flow among each subsystem is shown in Fig. 3. We
present the details of the dynamic target positioning algorithm in
the next.

4.4.1. Motion model
The motions of involved human agents are not known a pri-

ori. We assume that the motions of the nonmaneuvering human
targets are driven by white noise acceleration process and are
mathematically expressed as [48]:

ξi(k + 1) = ξi(k) + ∆T · v i(k), (2a)
v i(k + 1) = v i(k) + ωi(k). (2b)

where i = 1, 2, representing the two human targets; ξi ∈ R2,
v i ∈ R2 represent the position and velocity of Target 1 or Target
2, respectively; ωi is a white Gaussian noise with zero-mean and
covariance Q i ∈ R2×2, denoted as ωi ∼ N (0,Q i); ∆T is the
sampling time.

Define the state vector of the system as x(k) = [ξTt1(k), v
T
t1(k),

ξTt2(k), v
T
t2(k)]

T . The system motion is re-written in the following
linear discrete-time state propagation form:

x(k + 1) = F · x(k) + G · ω(k) (3)

where the state transition matrix F and the input matrix G are
obtained from (2); ω(k) = [ωT

t1(k), ωT
t2(k)]

T is the vector that
represents a white Gaussian noise process with zero mean and
covariance Q (k) = E[ω(k) · ω(k)T ]. We consider constant system
noise covariance Q which is known a priori. Note that we assume
the motion of two human targets are independent, thus the white
Gaussian noise ωt1 and ωt2 are uncorrelated.

4.4.2. Observation model
We define the system observation vector z(k) = [z1(k), z2(k),

zT3(k)]
T received at time-step k as

z1(k) = dr2(k) + νd1(k), (4a)
z2(k) = d12(k) + νd2(k), (4b)
z3(k) = ξt1(k) + νt1(k). (4c)

where z1(k) and z2(k) are the measurement of relative distance
between the robot and Target 2, Target 1 and Target 2, respectively,
which are obtained by the acoustic ranging (discussed in Sec-
tion 4.3).We assume the relative distancemeasurement is affected
by the zero-mean Gaussian white noise νd1(k) and νd2(k), respec-
tively, which have the same variance σ 2

d , denoted as νd1, νd2 ∼

N (0, σ 2
d ). The position measurement of Target 1, z3(k), is obtained

by Kinect-based human following (discussed in Section 4.2). The
positionmeasurement is affected by thenoise νt1 which is assumed
as zero-mean Gaussian white noise with covariance Rt1 ∈ R2×2,
denoted as νt1 ∼ N (0,Rt1). The distance measurement noise
νd1(k), νd2(k), and the positionmeasurement noise νt1 are indepen-
dent.

We then write the observationmodel in a compact form, that is

z(k) = h(x(k)) + ν(k). (5)

where h(·) describes the observation function that is defined in
(4); ν(k) = [νd1(k), νd2(k), νt1(k)T ]T is the vector of Gaussian noise
with zero mean and covariance R(k) = E[ν(k) · ν(k)T ]. To derive
the covariance R(k), we analyze the measurement error using the
method in [49] in the next.

By linearizing z1(k) and z2(k) in (4a) and (4b), the measurement
error z̃1(k) is obtained as

z̃1(k) = z1(k) − ẑ1(k),

≃ H r2,1(k) · x̃(k) + Γr2 · νr2(k).
(6)

where H r2,1(k) ∈ R1×8 is the first order partial derivative of dr2(k)
with respect to the system state x(k), valuated at x̂(k|k − 1), and

x̃(k) = x(k) − x̂(k|k − 1),

Γr2(k) =
[
1 H r2,2(k)

]
,

νr2(k) =

[
νd1(k) ξ̃

T
r (k)

]
T .

H r2,2(k) ∈ R1×2 is the first order partial derivative of dr2(k) with
respect to the robot position ξr (k), valuated at ξ̂r (k); ξ̃r (k) = ξr (k)−
ξ̂r (k) is the estimation error of robot position. Given that νd1(k) and
ξ̃
T
r (k) are independent, the variance of themeasurement error z̃1(k)

is expressed as

σ 2
r2(k) =Γr2(k) · E{νr2(k) · νT

r2(k)} · Γ T
r2(k)

=H r2,2(k) · E{ξ̃r (k) · ξ̃
T
r (k)} · HT

r2,2(k)

+ E{νd1(k) · νT
d1(k)}

=H r2,2(k) · P r (k) · HT
r2,2(k) + σ 2

d .

(7)

where P r (k) is the covariance of the error in robot position esti-
mation. One can see that the sources of noise and uncertainties
that contribute to the measurement error z̃1(k) include both the
uncertainty of robot position estimation and the acoustic ranging
noise.

The measurement error z̃2(k) is obtained as

z̃2(k) = z2(k) − ẑ2(k)

≃ H12(k) · x̃(k) + νd2(k).
(8)
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Algorithm 2 EKF-based Position Estimation Algorithm
1: input: measurements z(k)
2: if time step k = 0 then
3: Initialize first estimation of x̂(0) with covariance P(0)
4: else
5: predict: prior state estimate x̂(k|k − 1) and prior covariance

P(k|k − 1) using (14) and (15)
6: if acoustic ranging z1(k), z2(k) updated then
7: update: Kalman gain K (k) using (18),
8: posterior estimate x̂(k), P(k) using (16) and (17), respec-

tively
9: else

10: prior estimate x̂(k|k − 1) → x̂(k), P(k|k − 1) → P(k)
11: end if
12: end if
13: output: posterior position estimate and associated covariance:

x̂(k), P(k)

where H12(k) ∈ R1×8 is the first order partial derivative of d12(k)
with respect to the system state x(k), valuated at x̂(k|k − 1). Then,
the variance of the measurement error z̃2(k) is given by

σ 2
12(k) = E{νd2(k) · νT

d2(k)} = σ 2
d . (9)

The measurement error z̃3(k) is obtained as

z̃3(k) = z3(k) − ẑ3(k)

= ξ̃t1(k) + νt1(k).
(10)

where ξ̃t1(k) = ξt1(k) − ξ̂t1(k|k − 1). Then, the covariance of the
measurement error z̃3(k) is given by

Rt1(k) = E{νt1(k) · νT
t1(k)}

= P r (k) + R f (k).
(11)

where R f (k) denotes the covariance of the Gaussian white noise
corresponding to the relative position measurement. One can see
from the equation that the uncertainty of Target 1 position mea-
surement depends on both the uncertainty of robot position es-
timation, P r (k), and the uncertainty corresponding to the relative
position measurement with respect to the robot, R f (k). Note that
the estimation error of robot position and relative position mea-
surement from the Kinect sensor are independent.

Due to the common component of measurement uncertainty
originating from the robot position estimation in (7) and (11),
the measurement error of z1(k) and z3(k) are correlated, and the
correlation is given as

Rr2,t1(k) = Γr2(k) · E{νr2(k) · νT
t1(k)}

= Γr2(k) ·
[
02×1 P r (k)

] T

= H r2,2(k) · P r (k).

(12)

The results of (7), (9), (11) and (12) allows for the evaluation of
the 4 × 4 covariance matrix R(k) of the measurement error in (5),
which can be written as

R(k) =

⎡⎢⎣ σ 2
r2(k) 0 Rr2,t1(k)

0 σ 2
12(k) 01×2

RT
r2,t1(k) 02×1 Rt1(k)

⎤⎥⎦ . (13)

4.4.3. EKF-based dynamic positioning algorithm
The EKF-based dynamic positioning algorithm takes the input

from the observation vector z(k), by the steps of initialization,
prediction, and updating, it returns the position estimate of the
Target 1, ξ̂t1 and the Target 2, ξ̂t2. The algorithm is described below.

• Prediction

With the givenmotionmodel, the system process is propagated by
the following equation:

x̂(k|k − 1) = F · x̂(k − 1) (14)

P̂(k|k − 1) = F · P(k − 1) · F T
+ G · Q · GT (15)

where the x̂(k − 1) and P(k − 1) are the posterior state estimates
and associated covariance matrix, respectively.

• Update

After an observation is taken, the posterior estimates of the state
vector and covariance are updated by:

x̂(k) = x̂(k|k − 1) + K (k) · [z(k) − h(x̂(k|k − 1))] (16)

P(k) = (I − K (k) · H(k)) · P(k|k − 1) (17)

where

K (k) = P(k|k − 1) · HT (k) · [H(k) · P(k|k − 1) · HT (k) + R(k)]−1 (18)

is the Kalman gain, and H(k) is the Jacobian matrix of observation
function h(·) valuated at current prior state x̂(k|k − 1), that is
H(k) = [Hd(k),Hp(k)]T , where

Hd,[ij](k) =
∂hi

∂xj
|x̂(k|k−1), i = 1, 2; j = 1, . . . , 8 (19)

Hp =
[
I2×2 02×6

]
(20)

Given the range-onlymeasurement at each time-step, the prob-
ability density representing the possible position of Target 2 is
multi-modal. However, with the prior target position estimation
predicted from the previous step, the multi-modal density can be
approximated as a uni-modal Gaussian distribution. Therefore, the
target location is uniquely determined in real time by the recursive
prediction and update process in the above EKF algorithm. The
implementation of the proposed EKF-based algorithm is described
in Algorithm 2.

5. Experimental validation

To validate the proposed indoor human localization system and
the dynamic positioning algorithm, we conducted experiments in
two different indoor environments, namely, a lab/office environ-
ment and an atrium environment on the campus of Stevens Insti-
tute of Technology. In this section, we present the experimental
setup, testing results, and performance evaluation under different
environmental and operating conditions.

5.1. Experimental setup

Mobile Robot: As shown in Fig. 4(a), the experiment platform
includes a Pioneer 3AT mobile robot equipped with a SICK laser
range finder, a Kinect 3D sensor and an on-board ASUS X201-DH01
laptop which has an Intel R⃝ Celeron R⃝ 847 Dual Core Processor.
The Kinect generates 57◦ laser scans horizontally at the rate of
30 Hz. Odometry is also equipped to detect the linear and angular
displacement. The robot is operated on Robot Operating System
(ROS), where Algorithm 2 was implemented.

Smartphones: The LG R⃝ E960 smartphones with Android oper-
ating system (OS), shown in Fig. 4(b), are used by the human targets
for emitting and recording beep signals. The microphones of the
smartphones respond to the designed beep sound with 16 kHz



C. Jiang et al. / Robotics and Autonomous Systems 106 (2018) 82–94 89

(a) (b)

Fig. 4. Experimental testbeds: (a) Pioneer 3AT autonomous mobile robot with
SICK LMS200 laser range finder and Kinect; (b) LG E960 smartphones with Android
operating system.

(a)

(b)

Fig. 5. The floor plan: (a) The lab/office environment: 1—laboratory, 2—corridor,
and 3—office; (b) The atrium environment in the Babbio Center of the Stevens
campus.

frequency. We used 4 beeps with an interval of 5000 samples in
the beep signal.

Implementation: The software programs for system implemen-
tation are developed on both the robot laptop and the smart-
phones. The Android application for acoustic data acquisition on
smartphones is developed in Java. Program developed in C++ has
been used for data acquisition, scheduling control and processing
of acquired sound files for ranging calculation on the robot. Pro-
gram for estimation algorithm is developed in C++ and wrapped
as a ROS package. Data between different platforms (ROS and
Android OS) is exchanged using sockets over wireless network to
ensure compatibility between different programs.

Experimental Environments:
(1) The Lab/Office Environment: The first experiment takes

place in an indoor campus building with a laboratory, an office and
corridor connected between them. The total size is about 69 by
33 square feet, as shown in Fig. 5(a). The laboratory room has an
open testing area and shelves and tables located in one corner of
the room. The office room is furnished with cubicles and dividers

(a) 200 cm. (b) 300 cm. (c) 400 cm.

(d) 500 cm. (e) 600 cm. (f) 700 cm.

Fig. 6. Cumulative density function (CDF) of ranging errors under moderate and
heavy noises in the lab/office environment.

that are 1.6 m in height. The corridor is 1.8 m in width, connecting
the laboratory room and the office room.

(2) The Atrium Environment: As shown in Fig. 5(b), the atrium
is approximately 400 square meters with an open area, a 1 m high
round table, a stair, and a few pillars scattered in the area. It is
located in the Babbio center of the Stevens campus.

5.2. Evaluation of the acoustic ranging and robot self-localization
subsystems

Before we tested Algorithm 2 for the complete human indoor
localization system,we first tested each subsystem shown in Fig. 2.
Particularly, we evaluated two subsystems, the acoustic ranging
and the robot self-localization subsystems, for its performances
under different environmental and operating conditions to charac-
terize the uncertainties and choose appropriate noise covariance
matrices, which may significantly affect the performance of the
overall system.

5.2.1. The acoustic ranging subsystem
We carried out experiments on the acoustic ranging subsystem

to obtain the statistical noise characteristics of ranging measure-
ment error in the lab/office and the atriumenvironments under dif-
ferent environmental noise levels. The statistical results obtained
were used for selecting the variance of acoustic ranging noise
σ 2
d . Specifically, in each environment, the experiments were con-

ducted under 50 dB (moderate) and 70 dB (heavy) environmental
noise. Two smartphones were placed apart at a distance varying
from 200 cm to 700 cm. For each separation distance, 32 trials are
performed and the results were analyzed to obtain the statistical
results of measurement accuracy.

Fig. 6 shows the cumulative density function (CDF) of ranging
errors under different environmental noise levels in the lab/office
environment. It shows that the level of background noise slightly
affects the ranging accuracy when the two smartphones were put
apart by 700 cm or less. As shown in Fig. 6(d), for example, the
90th percentile error are less than 30 cm under both background
noise levels, with two smartphones 500 cm apart. Better results
are achieved in the case of smaller separation distance, as shown
in Fig. 6(a) to 6(c). Fig. 7 illustrates the comparison of median
and 90th percentile ranging errors between the lab/office and the
atrium environments. It shows that the atrium environment has a
slightly increased estimation error, which is caused by the higher
noise levels in the atrium environment comparing to the quieter
lab/office environment.
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(a) (b)

Fig. 7. Comparison of ranging errors between the lab/office and the atrium envi-
ronments: (a) Median error; (b) 90th percentile error.

From the statistical results, we found that the standard devi-
ation of ranging errors are less than 0.1 m under the moderate
noise level and 0.15 m under the heavy noise level in lab/office
environment when the separation distance is below 400 cm. Ac-
cordingly, in our experiments for the lab/office environment, the
variance of ranging errors σ 2

d in was set to be σ 2
d = 0.12 m2

and 0.152 m2 under the moderate and heavy noises, respectively.
Considering the larger distance between the robot and targets
during the experiments in the atrium environment, the covariance
σ 2
d was hence set to be 0.252 m2. The ranging error covariance was

selected in order to obtain superior performance of the filtering
algorithm discussed in Section 4.4.3. Inappropriate selection of
the parameter could affect the convergence rate and optimality in
position estimate.

5.2.2. The robot self-localization subsystem
We performed robot autonomous navigation experiments in

both the lab/office and the atrium environments, and recorded the
time evolution of robot position estimation. Specifically, during
the experiment, the robot started navigation at an approximately
known initial position with respect to a map which was built in
advance and moved at a speed of 0.4 m/s, and returned to the
initial position. The robot self-localization subsystem returns in
real time the robot’s estimated position and the associated co-
variance, P r (k), which reflects the uncertainty of the robot local-
ization algorithm discussed in Section 4.1. The standard deviation
of robot position estimate were calculated by taking square root
of the covariance. Fig. 8(a) and 8(b) show the time evolution of
standard deviation of robot position estimate. It can be seen that
the estimated uncertainties in both positions x and y converge after
20 s. As shown by the red dashed lines in the inset subfigures, the
standard deviations in both positions x and y are upper bounded
by 0.1 m for the lab/office environment and 0.18 m for the atrium
environment. The temporal average of the standard deviation after
20 s is around 0.06 m for the lab/office environment and 0.1 m
for atrium environment. These experimental results show that our
robot self-localization subsystem has a good accuracy. We further
plot the autocorrelation functions of the estimated uncertainty in
Fig. 8(c) and 8(d) for the lab/office environment and the atrium
environment, respectively. We can see from the figures that the
robot localization uncertainty can be considered uncorrelated.

It is worth noting that in many practical problems, Gaussians
are robust estimators, and EKFs have been applied with great suc-
cess to state estimation problems that the underlying assumptions
are not strictly followed [41].

5.3. Overall performance of the localization system

5.3.1. Indoor lab/office environment
In this subsection, we present our experimental results of the

overall localization system in the indoor lab/office environment

as shown in Fig. 5(a). The trajectories of the two human targets
are pre-selected starting from the laboratory room to the office
room going through the corridor. To obtain the ground truth for
performance evaluation, we marked 19 waypoints on the floor for
the persons (i.e., Targets 1 and 2) to follow.We started each trial of
the experiments by taking the first acoustic ranging measurement
at the start position of each person, and the robot follows Target 1
as both persons move along the marked waypoints at an average
speed of 0.4 m/s. We run the human localization algorithm on the
robot in the ROS environment.

Experiments were conducted during the evening and daytime,
and recorded for performance evaluation as shown in Figs. 9 and
10 for evenings testing with moderate noise level and daytime
testing with heavy noise level, respectively. Figs. 9(a) and 10(a)
show the estimated positions of Targets 1 and 2 together with
the ground truth trajectories marked by the waypoints. Figs. 9(b)
and 10(b) illustrate estimation errors versus time. It can be seen
from the results that the proposed positioning algorithm is able
to track the motion of the moving persons, and the algorithm
takes about 15 to 18 s (roughly 5 to 6 updating iterations) to
converge without the prior knowledge of target initial positions.
Steady state estimation error is calculated by taking the average of
estimation errors for Targets 1 and 2 after 18 s (when the algorithm
converges). Calculated from Fig. 9(b), the steady-state estimation
errors in the evening are 0.48 m for Target 1, and 0.76 m for Target
2. In comparison, calculated from Fig. 10(b), the average errors
in the daytime are 0.42 m for Target 1, and 0.87 m for Target 2.
We can see that better localization accuracy was obtained in the
evening due to the noise effect, because background noises from
the environment and pedestrians during the daytime degrade the
acoustic ranging accuracy comparing to the evening setup.

Furthermore, we characterize the position estimation uncer-
tainty of Target 2 using the square root of the determinant of
estimation covariance matrix,

√
det(P t2), associated with Target

2, that is, P t2 is the submatrix of the covariance matrix P defined
in (15) in Section 4.4.3, and P ∈ R8×8 has the diagonal entries
of

{
P t1, Pv,t1, P t2, Pv,t2

}
with the first two submatrix elements

denoting the position and velocity covariance matrices for Target
1, respectively, and the last two submatrix elements representing
the position and velocity covariance matrix for the robot Target
2, respectively. The temporal propagation of the estimated local-
ization uncertainty for Target 2 are shown in Figs. 9(c) and 10(c).
The steady-state estimation uncertainty during daytime is slightly
larger than that during evening.

5.3.2. Indoor atrium environment
In this subsection, we present the experiment performed in

the atrium environment of the Babbio Center on Stevens campus.
Similar to the lab/office environment presented in the last sub-
section, the trajectories of human targets were pre-selected along
12 waypoints, which are used as ground-truth positions in perfor-
mance evaluation. The process of each trial of experiments were
the same as described in the previous subsection for the lab/office
environment, and the experiment result is shown in Fig. 11, where
Fig. 11(a) and 11(b) illustrate the temporal propagation of the
estimation errors. With unknown initial position, the estimation
errors converge after 12 s. (about 4 iterations) for both Targets 1
and 2. The steady-state error, obtained by taking the average of
estimation errors after 12 s (when the estimates converge), are 0.51
m for Target 1 and 1.37 m for Target 2, respectively. The temporal
propagation of estimated localization uncertainty,

√
det(P t2), for

Target 2, is shown in Fig. 11(c), which shows that the estimated
uncertainty settles around 0.25 m2 after 15 s.

Comparing the experimental results obtained in the lab/office
environment and the atrium environment, we found the perfor-
mance of the system in the lab/office environment is slightly bet-
ter than that of the atrium environment. This can be explained
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(a) (b) (c)

(d)

Fig. 8. Robot position estimation: temporal evolution of standard deviation of robot position estimate in (a) the lab/office environment; (b) the atrium environment; (c) the
autocorrelation function of the estimated uncertainty shown in (a); (d) the autocorrelation function of the estimated uncertainty shown in (b). The red dashed lines in the
inset figures of (a) and (b) correspond to the upper bound of the standard deviation that are used as the noise characterization of robot self-localization.

(a) (b) (c)

Fig. 9. Human localization experiment in the lab/office environment under moderate noise level (during evenings): (a) True and estimated trajectories; (b) Temporal
propagation of estimation errors; (c) Estimated localization uncertainty, i.e., the square root of the determinant of estimation covariance matrix,

√
det(P t2)(m2), for position

estimate of Target 2.

(a) (b) (c)

Fig. 10. Human localization experiment in the lab/office environment under heavynoise level (during daytime): (a) True and estimated trajectories; (b) Temporal propagation
of estimation errors; (c) Estimated localization uncertainty, i.e., the square root of the determinant of estimation covariance matrix,

√
det(P t2)(m2), for position estimate of

Target 2.

from two aspects of the environmental effects. First, the atrium
environment has a larger open area. Correspondingly, the rela-
tive distances between the robot and the persons (targets) can
increases up to 6.5 m during the experiment, comparing to the
maximumrelative distance of 4m in the lab/office environment. As
demonstrated in Fig. 7, the 90th percentile ranging error increases
to around 0.4mas the distance increase to 6 mor 7m.Hence larger
acoustic ranging error caused by the distance between the robot
and targets contributes to the overall localization performance
deterioration. Second, the atrium environment has sparse fixtures
and a huge glass wall on one side, comparing to the lab/office

environment that has a nearby wall or doors or other landmarks
to sense all the time. During the robot self-localization process,
the robot frequently updates and corrects its position estimate
using existing references such as pillars and tables, so lack of
environmental fixtures affects robot self-localization accuracy.

5.4. Performance impact factors and discussion

We have conducted experiments under different environmen-
tal and operating conditions. The performances are evaluated and
discussed in this subsection.
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(a) (b) (c)

Fig. 11. Human localization experiment in the atrium environment: (a) True and estimated trajectories; (b) Temporal propagation of estimation errors; (c) Estimated
localization uncertainty, i.e., the square root of the determinant of estimation covariance matrix,

√
det(P t2)(m2), for position estimate of Target 2.

(a) (b)

Fig. 12. Estimation accuracy under different environmental noise levels: (a)median
error; (b) 90th percentile error.

5.4.1. Effect of environmental noise
Environmental noise is an important factor that affects the

estimation accuracy of the acoustic ranging subsystem. To evaluate
the performance of the proposed system, we performed experi-
ments during the daytime and eveningswith different noise levels.
While the environment noise is moderate in the evening, which
is around 50 dB, the experiments could experience 70 dB noise
during the daytime due to human conversation, peoplewalking by,
air conditioning units, and other types of noises.

The experimentswere repeated 10 times during daytime and10
times during evenings in the lab/office environment to obtain the
statistics of estimation accuracy. The steady state estimation error
of each trial of the experiments was used to calculate the median
and 90th percentile error. Fig. 12 shows the comparison of the
estimation accuracy between different environmental noise levels
for both Target 1 and Target 2. As shown in Fig. 12(a), the median
error of Target 1 and Target 2 are 0.43 m and 0.85 m under the
moderate noise level (evening), respectively, in comparison to 0.51
m and 0.93 m under the heavy noise level (daytime), respectively.
The 90th percentile error of Target 1 and Target 2, as shown in
Fig. 12(b), are 0.52 m and 1.21 m under the moderate noise level,
respectively, in comparison to 0.56 m and 1.42 m under the heavy
noise level, respectively. The experimental results show that the
estimation accuracy for Target 2 degrades by approximately 17% as
the noise level increases, which is due to sensitivity of the acoustic
ranging subsystem to environmental noises. In contrast, the esti-
mation error for Target 1 varies insignificantly because position
estimation of Target 1 mainly relies on the Kinect vision sensor
measurement, which is not sensitive to environmental noises.

5.4.2. Effect of walking speed
To study the effect of human walking speed on the estimation

accuracy, we compare the experimental results obtained under
the cases of person strolling at a speed of 0.4 m/s and walking at
a normal speed of 0.8 m/s in average, at each of which Target 1
and Target 2 follow the same pre-selected trajectories. Due to the

(a) (b)

Fig. 13. Estimation accuracy under different walking speed: (a) median error; (b)
90th percentile error.

delay of acoustic ranging signal processing, the acoustic ranging
measurement becomes spatially sparse as the person’s walking
speed increases. We repeat the experiment 10 times for each
walking speed, and calculate the median and 90th percentile error
of estimation error in the same way as described in Section 5.4
A. Fig. 13 shows the performance comparison between two walk-
ing speeds under the same moderate environmental noise level.
Specifically, themedian estimation error of Target 2 at the speed of
0.4m/s and 0.8m/s are 0.89 m and 1.03 m, respectively. The effect
ofwalking speed on the estimation accuracy is negligible for Target
1 because the Kinect vision sensor returns measurement data fast
enough, which is less sensitive to the human walking speed.

Table 1 summarizes the estimation accuracy of Target 1 and
Target 2 under the effect of bothwalking speed and environmental
noise level. We can see that the median estimation accuracy for
Target 1 is between 0.43 m and 0.55 m, and ranges from 0.85 m to
1.12 m for Target 2.

5.4.3. Non-line-of-sight issue
Line of sight (LoS) between transmitter and receiver pair en-

sures correct measurement result for acoustic ranging. If the path
between the transmitter and receiver pair is partially or completely
obstructed, acoustic ranging is not able to return accurate results.
In our experiments, the student room in the lab/office environ-
ment is a clustered area that may cause non-line-of-sight (NLoS)
problem if the targets and robot are obstructed by the cubicle
dividers. The impact of NLoS on acoustic ranging has been analyzed
by adjusting the distance between two smartphones divided by
cubicle divider from 0.1 m to 1 m. We observed that the returned
range value is much higher than the true value and the error
raises from 0.5 m to 5 m with an increasing separation distance.
This may result from the attenuation of beep sound as it travels
across the divider. Also, the beep sound receivedmayhave traveled
through multiple paths that bounce off the walls or ceiling, which
equivalently produce longer distance between the transmitter and
receiver.
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Table 1
Median and 90 percentile estimation error versus both environmental noise and walking speed.

Target 1 Target 2

Walking speed 0.4 m/s Walking speed 0.8 m/s Walking speed 0.4 m/s Walking speed 0.8 m/s

Moderate noise level (evening) 0.43 m (0.52 m) 0.54 m (0.58 m) 0.85 m (1.21 m) 0.98 m (1.72 m)
Heavy noise level (daytime) 0.51 m (0.56 m) 0.55 m (0.62 m) 0.93 m (1.42 m) 1.12 m (1.87 m)

* The values inside and outside the bracket represent median and 90th percentile errors, respectively.

Although the proposed system may return false estimation
result without LoS ranging measurement, we found from the ex-
periments that the localization algorithm is able to converge again
from incorrect position estimate which is caused by erroneous
acoustic ranging result, if the targets and robot regain LoS for
acoustic ranging. The proposed system allows occasional interrup-
tion of NLoS and requires several update iterations to converge
after LOS is regained. Also, the NLoS issue can be addressed by
taking advantage of the proposed cooperative localization scheme,
that is, if the original LoS ranging is lost, the ranging from other
nearby person peers or robots, to which the LoS transmission is
established, can be used for position estimation.

5.4.4. Multipath propagation effect
In acoustic ranging, smartphones may receive the beep sig-

nals transmitted through multiple paths in addition to line-of-
sight path as the sound might be reflected by obstacles. Multipath
propagation most likely occurs in narrow space, for example, the
corridor and student room in the lab environment. The presence of
multipath propagation basically degrades ranging accuracy. How-
ever, the acoustic ranging adopted in our system use change-
point detection method which identifies the first strong signal
that deviates from noise [50], which makes the system robust to
multipath propagation effect.

6. Conclusion

In this paper, we developed a cooperative human indoor local-
ization system utilizing a self-localized mobile robot and smart-
phones. An EKF-based dynamic localization algorithm was devel-
oped to fuse distance measurements from both the Kinect 3D
vision sensor and smartphone-based acoustic ranging, so that the
target positions can be iteratively estimated. Experiments were
conducted using a Pioneer 3AT mobile robot and two LG smart-
phones, which showed that the positioning algorithm was able
to locate and track moving human targets in different indoor
environments. The median estimation accuracy ranges from 0.43
m to 1.12 m under different environmental noise levels and with
different human walking speed. The localization performance is
comparable to most indoor localization methods for moving tar-
gets using WiFi signature maps without the cost of deploying
intensive sensing infrastructure.
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